
Beanstalk
Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: May 9th, 2022 - July 1st, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 6

CONTACTS 6

1 EXECUTIVE OVERVIEW 7

1.1 INTRODUCTION 8

1.2 AUDIT SUMMARY 8

1.3 TEST APPROACH & METHODOLOGY 8

RISK METHODOLOGY 9

1.4 SCOPE 11

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 14

3 FINDINGS & TECH DETAILS 16

3.1 (HAL-01) INTERNAL BALANCE TOKENS CAN BE DRAINED THROUGH THE

CURVEFACET.EXCHANGEUNDERLYING FUNCTION - CRITICAL 18

Description 18

Proof of Concept 19

Risk Level 20

Recommendation 20

Remediation Plan 21

3.2 (HAL-02) USDC OF THE INTERNAL BALANCE CAN BE DRAINED BY ANY USER

THROUGH THE FERTILIZERFACET.MINTFERTILIZER FUNCTION - CRITICAL

22

Description 22

Risk Level 23

Recommendation 23

Remediation Plan 24

3.3 (HAL-03) INCONSISTENT INTERNAL BALANCES WHEN SUPPLYING TRANSFER-

ON-FEE OR DEFLATIONARY TOKENS - MEDIUM 25

1

Description 25

Proof of Concept 27

Risk Level 27

Recommendation 27

Remediation Plan 27

3.4 (HAL-04) UNLIMITED FERTILIZER CAN BE BOUGHT THROUGH THE FERTIL-

IZERFACET.MINTFERTILIZER FUNCTION - MEDIUM 29

Description 29

Risk Level 30

Recommendation 30

Remediation Plan 30

3.5 (HAL-05) ACTIVE FERTILIZER WILL BE CLAIMED AUTOMATICALLY BY THE

SENDER DURING A SAFETRANSFERFROM CALL - LOW 32

Description 32

Risk Level 33

Recommendation 34

Remediation Plan 34

3.6 (HAL-06) SEASONFACET.INCENTIVIZE EXPONENTIAL INCENTIVE LOGIC IS

NOT WORKING - LOW 35

Description 35

Risk Level 36

Recommendation 36

Remediation Plan 36

3.7 (HAL-07) MISSING REQUIRE CHECK IN TOKENFACET.WRAPETH FUNCTION -

LOW 37

Description 37

2

Proof of Concept 38

Risk Level 38

Recommendation 38

Remediation Plan 38

3.8 (HAL-08) MULTIPLE OVERFLOWS IN MARKETPLACEFACET - LOW 39

Description 39

Risk Level 41

Recommendation 41

Remediation Plan 41

3.9 (HAL-09) FERTILIZERPREMINT.BUYANDMINT FUNCTION COULD BE SAND-

WICHED - INFORMATIONAL 42

Description 42

Risk Level 43

Recommendation 43

Remediation Plan 43

3.10 (HAL-10) POD PRICE IS LIMITED TO 16.7 BEANS - INFORMATIONAL 44

Description 44

Risk Level 45

Recommendation 45

Remediation Plan 45

3.11 (HAL-11) FARMFACET: USE OF DELEGATECALL IN A FOR LOOP - INFOR-

MATIONAL 47

Description 47

References 48

3

Risk Level 48

Recommendation 48

Remediation Plan 48

3.12 (HAL-12) CRITICAL DEPENDENCY ON CURVE METAPOOL FACTORIES - IN-

FORMATIONAL 49

Description 49

Risk Level 51

Recommendation 51

Remediation Plan 51

3.13 (HAL-13) SAFETRANSFER IS NOT USED FOR ALL THE TOKEN TRANSFERS -

INFORMATIONAL 52

Description 52

Code Location 52

Risk Level 52

Recommendation 53

Remediation Plan 53

3.14 (HAL-14) REQUIRE STATEMENT TYPOS - INFORMATIONAL 54

Description 54

Risk Level 54

Recommendation 54

Remediation Plan 54

3.15 (HAL-15) INITIALIZE FUNCTION IN FERTILIZER CONTRACT CAN BE RE-

MOVED - INFORMATIONAL 55

Description 55

Risk Level 56

4

Recommendation 56

Remediation Plan 56

3.16 (HAL-16) UNNEEDED INITIALIZATION OF UINT256 VARIABLES TO 0 -

INFORMATIONAL 57

Description 57

Code Location 57

Risk Level 59

Recommendation 59

Remediation Plan 60

3.17 (HAL-17) USING POSTFIX OPERATORS IN LOOPS - INFORMATIONAL 61

Description 61

Code Location 61

Proof of Concept 63

Risk Level 64

Recommendation 64

Remediation Plan 64

5

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 05/09/2022 Roberto Reigada

0.2 Document Updates 06/30/2022 Roberto Reigada

0.3 Draft Review 07/01/2022 Gabi Urrutia

1.0 Remediation Plan 07/11/2022 Roberto Reigada

1.1 Remediation Plan Review 07/11/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Roberto Reigada Halborn Roberto.Reigada@halborn.com

6

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Roberto.Reigada@halborn.com

7

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Beanstalk engaged Halborn to conduct a security audit on their smart

contracts beginning on May 9th, 2022 and ending on June 30th, 2022. The

security assessment was scoped to the smart contracts provided in the

GitHub repository BeanstalkFarms/Beanstalk.

1.2 AUDIT SUMMARY

The team at Halborn was provided seven weeks for the engagement and

assigned a full-time security engineer to audit the security of the

smart contract. The security engineer is a blockchain and smart-contract

security expert with advanced penetration testing, smart-contract

hacking, and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some security risks that were mostly

addressed by the Beanstalk team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the code and can quickly identify

items that do not follow the security best practices. The following

phases and associated tools were used during the audit:

8

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/BeanstalkFarms/Beanstalk/tree/master/protocol

• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity

variables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hot-spots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported

functions. (Slither)

• Testnet deployment (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security

incident and the IMPACT should an incident occur. This framework

works for communicating the characteristics and impacts of technology

vulnerabilities. The quantitative model ensures repeatable and accurate

measurement while enabling users to see the underlying vulnerability

characteristics that were used to generate the Risk scores. For every

vulnerability, a risk level will be calculated on a scale of 5 to 1 with

5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

9

EX
EC

UT
IV

E
OV

ER
VI

EW

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

10

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the following smart contracts:

• MarketplaceFacet.sol

• SeasonFacet.sol

• SiloFacet.sol

• WhitelistFacet.sol

• UnripeFacet.sol

• TokenFacet.sol

• PauseFacet.sol

• OwnershipFacet.sol

• FieldFacet.sol

• FertilizerFacet.sol: Added in Commit ID 2

• FarmFacet.sol

• DiamondLoupeFacet.sol

• DiamondCutFacet.sol

• CurveFacet.sol

• ConvertFacet.sol

• BDVFacet.sol

• FundraiserFacet.sol

• AppStorage.sol

• Diamond.sol

• Bean.sol

• GhostERC20.sol

• Sprout.sol

Commit ID 1:

- 17be0bbf1a17688978dfa551cbfee30d9a200f3e

Commit ID 2:

- 7866e870d4d97f22cc4b92730d5532168edb114c

Changes from Commit ID 1:

BDVFacet:

11

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/BeanstalkFarms/Beanstalk/tree/7866e870d4d97f22cc4b92730d5532168edb114c/protocol
https://github.com/BeanstalkFarms/Beanstalk/tree/17be0bbf1a17688978dfa551cbfee30d9a200f3e/protocol
https://github.com/BeanstalkFarms/Beanstalk/tree/7866e870d4d97f22cc4b92730d5532168edb114c/protocol

- Changed the name of a reference to a library for Unripe Beans + Unripe

LP.

BarnRaiseFacet:

- Deleted in exchange for Fertilizer Facet.

ConvertFacet:

- Changed BDV of the output of Convert to be the maximum of the BDV of

assets being converted from to the BDV of the assets being converted to.

- Combined beanToLP and lpToBean into getAmountOut (View functions).

CurveFacet:

- Fixed HAL-01 issue.

FarmFacet:

- Added a state variable named isFarm. This is set 1 upon deployment (1

= not farm, 2 = farm). Farm is set to 2 when a farm function starts and

1 when it ends. The wrapEth function, and in the future other functions

that use Ether, now have a refund operation that checks if the function

is a farm function or not. If not, it refunds the Ether. If it is, it

doesn’t refund the Ether and the farm function returns the Ether at the

end of the transaction.

FertilizerFacet:

- Created in accordance with BFP-72

SeasonFacet:

- In accordance with BFP-72, distribute 1/3 Beans mints to those who hold

Fertilizer instead of those who hold the Barn Raise tokens.

- Changed Soil based on caseId when p > 1. -> If case < 8, multiple by

constant < 1. When case >= 24, multiple by constant > 1.

SiloFacet:

- Added function to update BDV of Unripe token Deposit in accordance with

BFP-72.

TokenFacet:

- Added refund option when wrapping Eth.

12

EX
EC

UT
IV

E
OV

ER
VI

EW

https://bafkreihyatarnvwsgemqb35jxk2sl5alkwrddvoeixbwbthwfot6jt2a4a.ipfs.dweb.link/

UnripeFacet:

- Updated Unripe Tokens in association with BFP-72

Fertilizer:

- Added Fertilizer token

Fixed Commit ID:

- 1447fa2c0d42c73345a38edb4f4dad076392f429

13

EX
EC

UT
IV

E
OV

ER
VI

EW

https://bafkreihyatarnvwsgemqb35jxk2sl5alkwrddvoeixbwbthwfot6jt2a4a.ipfs.dweb.link/
https://github.com/BeanstalkFarms/Beanstalk/tree/1447fa2c0d42c73345a38edb4f4dad076392f429/protocol

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

2 0 2 4 9

IM
PA
CT

LIKELIHOOD

(HAL-01)
(HAL-02)

(HAL-06)
(HAL-07)
(HAL-08)

(HAL-03)
(HAL-04)

(HAL-05)

(HAL-09)
(HAL-10)
(HAL-11)
(HAL-12)
(HAL-13)
(HAL-14)
(HAL-15)
(HAL-16)
(HAL-17)

14

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - INTERNAL BALANCE TOKENS CAN
BE DRAINED THROUGH THE

CURVEFACET.EXCHANGEUNDERLYING
FUNCTION

Critical SOLVED - 07/11/2022

HAL02 - USDC OF THE INTERNAL BALANCE
CAN BE DRAINED BY ANY USER THROUGH
THE FERTILIZERFACET.MINTFERTILIZER

FUNCTION

Critical SOLVED - 07/11/2022

HAL03 - INCONSISTENT INTERNAL
BALANCES WHEN SUPPLYING

TRANSFER-ON-FEE OR DEFLATIONARY
TOKENS

Medium SOLVED - 07/11/2022

HAL04 - UNLIMITED FERTILIZER CAN BE
BOUGHT THROUGH THE

FERTILIZERFACET.MINTFERTILIZER
FUNCTION

Medium SOLVED - 07/11/2022

HAL05 - ACTIVE FERTILIZER WILL BE
CLAIMED AUTOMATICALLY BY THE SENDER

DURING A SAFETRANSFERFROM CALL
Low RISK ACCEPTED

HAL06 - SEASONFACET.INCENTIVIZE
EXPONENTIAL INCENTIVE LOGIC IS NOT

WORKING
Low SOLVED - 07/11/2022

HAL07 - MISSING REQUIRE CHECK IN
TOKENFACET.WRAPETH FUNCTION

Low SOLVED - 07/11/2022

HAL08 - MULTIPLE OVERFLOWS IN
MARKETPLACE FACET

Low SOLVED - 07/11/2022

HAL09 -
FERTILIZERPREMINT.BUYANDMINT
FUNCTION COULD BE SANDWICHED

Informational SOLVED - 07/11/2022

HAL10 - POD PRICE IS LIMITED TO
16.7 BEANS

Informational SOLVED - 07/11/2022

HAL11 - FARMFACET: USE OF
DELEGATECALL IN A FOR LOOP

Informational SOLVED - 07/11/2022

HAL12 - CRITICAL DEPENDENCY ON
CURVE METAPOOL FACTORIES

Informational ACKNOWLEDGED

HAL13 - SAFETRANSFER IS NOT USED
FOR ALL THE TOKEN TRANSFERS

Informational SOLVED - 07/11/2022

15

EX
EC

UT
IV

E
OV

ER
VI

EW

HAL14 - REQUIRE STATEMENT TYPOS Informational SOLVED - 07/11/2022

HAL15 - INITIALIZE FUNCTION IN
FERTILIZER CONTRACT CAN BE REMOVED

Informational SOLVED - 07/11/2022

HAL16 - UNNEEDED INITIALIZATION OF
UINT256 VARIABLES TO 0

Informational SOLVED - 07/11/2022

HAL17 - USING POSTFIX OPERATORS IN
LOOPS

Informational SOLVED - 07/11/2022

16

EX
EC

UT
IV

E
OV

ER
VI

EW

17

FINDINGS & TECH
DETAILS

3.1 (HAL-01) INTERNAL BALANCE
TOKENS CAN BE DRAINED THROUGH THE
CURVEFACET.EXCHANGEUNDERLYING
FUNCTION - CRITICAL

Description:

In the CurveFacet, the exchangeUnderlying() function is used to swap

underlying assets from different Curve stable pools:

Listing 1: CurveFacet.sol (Lines 70,72,76,77)

66 function exchangeUnderlying(

67 address pool ,

68 address fromToken ,

69 address toToken ,

70 uint256 amountIn ,

71 uint256 minAmountOut ,

72 LibTransfer.From fromMode ,

73 LibTransfer.To toMode

74) external payable nonReentrant {

75 (int128 i, int128 j) = getUnderlyingIandJ(fromToken , toToken ,

ë pool);

76 IERC20(fromToken).receiveToken(amountIn , msg.sender , fromMode)

ë ;

77 IERC20(fromToken).approveToken(pool , amountIn);

78

79 if (toMode == LibTransfer.To.EXTERNAL) {

80 ICurvePoolR(pool).exchange_underlying(

81 i,

82 j,

83 amountIn ,

84 minAmountOut ,

85 msg.sender

86);

87 } else {

88 uint256 amountOut = ICurvePool(pool).exchange_underlying(

89 i,

90 j,

91 amountIn ,

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

92 minAmountOut

93);

94 msg.sender.increaseInternalBalance(IERC20(toToken),

ë amountOut);

95 }

96 }

The LibTransfer.From fromMode has 4 different modes:

• EXTERNAL

• INTERNAL

• EXTERNAL_INTERNAL

• INTERNAL_TOLERANT

With the INTERNAL_TOLERANT fromMode tokens will be collected from the

user’s Internal Balance and the transaction will not fail if there is not

enough tokens there.

As in the receiveToken() call, users can use the INTERNAL_TOLERANT

fromMode and the value returned by receiveToken() is not checked users

can abuse this and swap tokens that belong to other users (tokens that

are part of other users’ internal balance).

Proof of Concept:

Pool: 0x99AE07e7Ab61DCCE4383A86d14F61C68CdCCbf27

Underlying WBTC: 0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599

Underlying sBTC: 0xfE18be6b3Bd88A2D2A7f928d00292E7a9963CfC6

1. User8 transfers 10_000000000000000000 sBTC tokens to his internal

balance.

2. User2 calls exchangeUnderlying() with an INTERNAL_TOLERANT fromMode,

setting as the amountIn 10_000000000000000000 and as fromToken the

sBTC token address. These sBTC tokens do belong to user8.

3. User2 successfully swaps for free the sBTC for the WBTC tokens,

getting 10_00184757 WBTC in his external balance.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://etherscan.io/address/0x99AE07e7Ab61DCCE4383A86d14F61C68CdCCbf27
https://etherscan.io/address/0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599
https://etherscan.io/address/0xfE18be6b3Bd88A2D2A7f928d00292E7a9963CfC6

4. Now User8 tries to withdraw from his internal balance the

10_000000000000000000 sBTC tokens he had deposited previously, but

the transactions fails as the contract does not have those tokens

anymore. They were swapped and stolen by user2.

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

It is recommended to save the return value of the receiveToken() call and

overwrite the amountIn variable with that return as shown below:

Listing 2: CurveFacet.sol (Line 76)

66 function exchangeUnderlying(

67 address pool ,

68 address fromToken ,

69 address toToken ,

70 uint256 amountIn ,

71 uint256 minAmountOut ,

72 LibTransfer.From fromMode ,

73 LibTransfer.To toMode

74) external payable nonReentrant {

75 (int128 i, int128 j) = getUnderlyingIandJ(fromToken , toToken ,

ë pool);

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

76 amountIn = IERC20(fromToken).receiveToken(amountIn , msg.sender

ë , fromMode);

77 IERC20(fromToken).approveToken(pool , amountIn);

78

79 if (toMode == LibTransfer.To.EXTERNAL) {

80 ICurvePoolR(pool).exchange_underlying(

81 i,

82 j,

83 amountIn ,

84 minAmountOut ,

85 msg.sender

86);

87 } else {

88 uint256 amountOut = ICurvePool(pool).exchange_underlying(

89 i,

90 j,

91 amountIn ,

92 minAmountOut

93);

94 msg.sender.increaseInternalBalance(IERC20(toToken),

ë amountOut);

95 }

96 }

Remediation Plan:

SOLVED: The Beanstalk team corrected the issue by overwritting amountIn

with the value returned from the receiveToken() call, as suggested.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.2 (HAL-02) USDC OF THE INTERNAL
BALANCE CAN BE DRAINED BY ANY USER
THROUGH THE
FERTILIZERFACET.MINTFERTILIZER
FUNCTION - CRITICAL

Description:

In the FertilizerFacet, the mintFertilizer() function is used to buy

Fertilizer in exchange for USDC:

Listing 3: FertilizerFacet.sol (Lines 43-48)

35 function mintFertilizer(

36 uint128 amount ,

37 uint256 minLP ,

38 LibTransfer.From mode

39) external payable {

40 uint256 remaining = LibFertilizer.remainingRecapitalization ();

41 uint256 _amount = uint256(amount);

42 if (_amount > remaining) _amount = remaining;

43 LibTransfer.receiveToken(

44 C.usdc(),

45 uint256(amount).mul(1e6),

46 msg.sender ,

47 mode

48);

49 uint128 id = LibFertilizer.addFertilizer(

50 uint128(s.season.current),

51 amount ,

52 minLP

53);

54 C.fertilizer ().beanstalkMint(msg.sender , uint256(id), amount ,

ë s.bpf);

55 }

This function has the same issue that was described in HAL01 - INTERNAL

BALANCE TOKENS CAN BE DRAINED THROUGH THE CURVEFACET.EXCHANGEUNDERLYING

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

FUNCTION as the value returned by receiveToken() is not checked, users

can abuse this and buy Fertilizer with the USDC of other users internal

balance through the INTERNAL_TOLERANT fromMode.

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

It is recommended to save the return value of the receiveToken() call and

overwrite the _amount variable with that return as shown below:

Listing 4: FertilizerFacet.sol (Line 43)

35 function mintFertilizer(

36 uint128 amount ,

37 uint256 minLP ,

38 LibTransfer.From mode

39) external payable {

40 uint256 remaining = LibFertilizer.remainingRecapitalization ();

41 uint256 _amount = uint256(amount);

42 if (_amount > remaining) _amount = remaining;

43 _amount = LibTransfer.receiveToken(

44 C.usdc(),

45 uint256(_amount).mul(1e6),

46 msg.sender ,

47 mode

48);

49 uint128 id = LibFertilizer.addFertilizer(

50 uint128(s.season.current),

51 uint128(_amount),

52 minLP

53);

54 C.fertilizer ().beanstalkMint(msg.sender , uint256(id), amount ,

ë s.bpf);

55 }

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

SOLVED: The Beanstalk team corrected the issue by considering the returned

value of the receiveToken() call:

Listing 5: FertilizerFacet.sol (Line 42)

35 function mintFertilizer(

36 uint128 amount ,

37 uint256 minLP ,

38 LibTransfer.From mode

39) external payable {

40 uint128 remaining = uint128(LibFertilizer.

ë remainingRecapitalization ()); // remaining <= 77 _000_000 so

ë downcasting is safe.

41 if (amount > remaining) amount = remaining;

42 amount = uint128(LibTransfer.receiveToken(

43 C.usdc(),

44 uint256(amount).mul(1e6),

45 msg.sender ,

46 mode

47).div(1e6)); // return value <= amount , so downcasting is safe

ë .

48 uint128 id = LibFertilizer.addFertilizer(

49 uint128(s.season.current),

50 amount ,

51 minLP

52);

53 C.fertilizer ().beanstalkMint(msg.sender , uint256(id), amount ,

ë s.bpf);

54 }

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.3 (HAL-03) INCONSISTENT INTERNAL
BALANCES WHEN SUPPLYING
TRANSFER-ON-FEE OR DEFLATIONARY
TOKENS - MEDIUM

Description:

In the library LibTransfer, used by the TokenFacet contract, the

transferToken() function assume that the amount of token is transferred

to the smart contract after calling token.safeTransferFrom(sender,

address(this), amount - receivedAmount); (and thus it updates the states

variables accordingly). For example:

Listing 6: LibTransfer.sol (Lines 37,38,74)

29 function transferToken(

30 IERC20 token ,

31 address recipient ,

32 uint256 amount ,

33 From fromMode ,

34 To toMode

35) internal returns (uint256 transferredAmount) {

36 if (fromMode == From.EXTERNAL && toMode == To.EXTERNAL) {

37 token.transferFrom(msg.sender , recipient , amount);

38 return amount;

39 }

40 amount = receiveToken(token , amount , msg.sender , fromMode);

41 sendToken(token , amount , recipient , toMode);

42 return amount;

43 }

44

45 function receiveToken(

46 IERC20 token ,

47 uint256 amount ,

48 address sender ,

49 From mode

50) internal returns (uint256 receivedAmount) {

51 if (amount == 0) return 0;

52 if (mode != From.EXTERNAL) {

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

53 receivedAmount = LibBalance.decreaseInternalBalance(

54 sender ,

55 token ,

56 amount ,

57 mode != From.INTERNAL

58);

59 if (amount == receivedAmount || mode == From.

ë INTERNAL_TOLERANT)

60 return receivedAmount;

61 }

62 token.safeTransferFrom(sender , address(this), amount -

ë receivedAmount);

63 return amount;

64 }

65

66 function sendToken(

67 IERC20 token ,

68 uint256 amount ,

69 address recipient ,

70 To mode

71) internal {

72 if (amount == 0) return;

73 if (mode == To.INTERNAL)

74 LibBalance.increaseInternalBalance(recipient , token ,

ë amount);

75 else token.safeTransfer(recipient , amount);

76 }

However, this may not be true if the token is a transfer-on-fee token

or a deflationary/rebasing token, causing the received amount to be less

than the accounted amount in the different state variables.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Proof of Concept:

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

It is recommended to get the actual received token amount by calculating

the difference of token balance before and after the transfer.

Remediation Plan:

SOLVED: The Beanstalk team addressed the issue and now supports

transfer-on-fee tokens:

Listing 7: LibTransfer.sol (Lines 38,39,40,64,65,66,)

30 function transferToken(

31 IERC20 token ,

32 address recipient ,

33 uint256 amount ,

34 From fromMode ,

35 To toMode

36) internal returns (uint256 transferredAmount) {

37 if (fromMode == From.EXTERNAL && toMode == To.EXTERNAL) {

38 uint256 beforeBalance = token.balanceOf(recipient);

39 token.safeTransferFrom(msg.sender , recipient , amount);

40 return token.balanceOf(recipient).sub(beforeBalance);

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

41 }

42 amount = receiveToken(token , amount , msg.sender , fromMode);

43 sendToken(token , amount , recipient , toMode);

44 return amount;

45 }

46

47 function receiveToken(

48 IERC20 token ,

49 uint256 amount ,

50 address sender ,

51 From mode

52) internal returns (uint256 receivedAmount) {

53 if (amount == 0) return 0;

54 if (mode != From.EXTERNAL) {

55 receivedAmount = LibBalance.decreaseInternalBalance(

56 sender ,

57 token ,

58 amount ,

59 mode != From.INTERNAL

60);

61 if (amount == receivedAmount || mode == From.

ë INTERNAL_TOLERANT)

62 return receivedAmount;

63 }

64 uint256 beforeBalance = token.balanceOf(address(this));

65 token.safeTransferFrom(sender , address(this), amount -

ë receivedAmount);

66 return receivedAmount.add(token.balanceOf(address(this)).sub(

ë beforeBalance));

67 }

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) UNLIMITED FERTILIZER
CAN BE BOUGHT THROUGH THE
FERTILIZERFACET.MINTFERTILIZER
FUNCTION - MEDIUM

Description:

In the FertilizerFacet contract, the mintFertilizer() function checks

if the amount provided by the user is higher than the remaining amount

of Fertilizer and if that is the case, _amount is overwritten with the

remaining Fertilizer preventing users to buy more Fertilizer than what

is remaining:

Listing 8: FertilizerFacet.sol (Lines 42,45,51)

35 function mintFertilizer(

36 uint128 amount ,

37 uint256 minLP ,

38 LibTransfer.From mode

39) external payable {

40 uint256 remaining = LibFertilizer.remainingRecapitalization ();

41 uint256 _amount = uint256(amount);

42 if (_amount > remaining) _amount = remaining;

43 LibTransfer.receiveToken(

44 C.usdc(),

45 uint256(amount).mul(1e6),

46 msg.sender ,

47 mode

48);

49 uint128 id = LibFertilizer.addFertilizer(

50 uint128(s.season.current),

51 amount ,

52 minLP

53);

54 C.fertilizer ().beanstalkMint(msg.sender , uint256(id), amount ,

ë s.bpf);

55 }

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Although, the contract wrongly uses the amount variable instead of _amount

allowing users to mint more Fertilizer than what is remaining:

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

It is recommended to use the _amount variable instead of amount for the

receiveToken(), addFertilizer() and beanstalkMint() calls in the

FertilizerFacet.mintFertilizer() function.

Remediation Plan:

SOLVED: The Beanstalk team corrected the issue:

Listing 9: FertilizerFacet.sol (Line 41)

35 function mintFertilizer(

36 uint128 amount ,

37 uint256 minLP ,

38 LibTransfer.From mode

39) external payable {

40 uint128 remaining = uint128(LibFertilizer.

ë remainingRecapitalization ()); // remaining <= 77 _000_000 so

ë downcasting is safe.

41 if (amount > remaining) amount = remaining;

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

42 amount = uint128(LibTransfer.receiveToken(

43 C.usdc(),

44 uint256(amount).mul(1e6),

45 msg.sender ,

46 mode

47).div(1e6)); // return value <= amount , so downcasting is safe

ë .

48 uint128 id = LibFertilizer.addFertilizer(

49 uint128(s.season.current),

50 amount ,

51 minLP

52);

53 C.fertilizer ().beanstalkMint(msg.sender , uint256(id), amount ,

ë s.bpf);

54 }

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.5 (HAL-05) ACTIVE FERTILIZER WILL
BE CLAIMED AUTOMATICALLY BY THE
SENDER DURING A SAFETRANSFERFROM
CALL - LOW

Description:

The Fertilizer contract contains the following _beforeTokenTransfer()

hook:

Listing 10: Fertilizer.sol (Lines 59,60)

50 function _beforeTokenTransfer(

51 address , // operator ,

52 address from ,

53 address to ,

54 uint256 [] memory ids ,

55 uint256 [] memory , // amounts

56 bytes memory // data

57) internal virtual override {

58 uint256 bpf = uint256(IBS(owner ()).beansPerFertilizer ());

59 if (from != address (0)) _update(from , ids , bpf);

60 _update(to , ids , bpf);

61 }

This hook will be called with every safeTransferFrom() or

safeBatchTransferFrom() call and will claim the fertilizer claimable

amount automatically on behalf of the sender:

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

If the amount of claimable fertilizer is zero, the receiver will get the

full unfertilized amount as expected:

This could allow the following scenario:

1. By making use of a third-party marketplace, user1 puts for sale his

Fertilizer at a low price. That fertilizer id can be fully claimed

at that time.

2. User2 buys the fertilizer planning to claim it afterwards and make

some profit, but the fertilizer is claimed automatically on behalf of

user1 during the safeTransferFrom() call and the user2 just receives

an already claimed fertilizer.

Risk Level:

Likelihood - 3

Impact - 2

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended to consider removing the _beforeTokenTransfer() hook

so these claims are not done automatically, preventing the scenario

mentioned.

Remediation Plan:

RISK ACCEPTED: The Beanstalk team accepts this risk.

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.6 (HAL-06)
SEASONFACET.INCENTIVIZE EXPONENTIAL
INCENTIVE LOGIC IS NOT WORKING - LOW

Description:

In the SeasonFacet contract, the incentivize() function is used to send

some Beans to the user that successfully called sunrise() to start a new

season:

Listing 11: SeasonFacet.sol (Lines 75,76)

70 function incentivize(address account , uint256 amount) private {

71 uint256 timestamp = block.timestamp.sub(

72 s.season.start.add(s.season.period.mul(season ()))

73);

74 if (timestamp > 300) timestamp = 300;

75 uint256 incentive = LibIncentive.fracExp(amount , 100,

ë timestamp , 1);

76 C.bean().mint(account , amount);

77 emit Incentivization(account , incentive);

78 }

As we can see, the rewards/timestamp is capped at a maximum of 300 seconds

and makes use of exponential rewards. But then, in the mint call, the

amount parameter is incorrectly used instead of incentive, which means

that the caller will always receive a fixed amount of beans (100):

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

It is recommended to update the incentivize() function as shown below so

the exponential rewards implementation is used:

Listing 12: SeasonFacet.sol (Line 76)

70 function incentivize(address account , uint256 amount) private {

71 uint256 timestamp = block.timestamp.sub(

72 s.season.start.add(s.season.period.mul(season ()))

73);

74 if (timestamp > 300) timestamp = 300;

75 uint256 incentive = LibIncentive.fracExp(amount , 100,

ë timestamp , 1);

76 C.bean().mint(account , incentive);

77 emit Incentivization(account , incentive);

78 }

This would be the rewarded beans with the suggested/corrected

implementation:

Remediation Plan:

SOLVED: The Beanstalk team corrected the issue and updated the code as

suggested.

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.7 (HAL-07) MISSING REQUIRE CHECK
IN TOKENFACET.WRAPETH FUNCTION -
LOW

Description:

In the TokenFacet contract, the wrapEth(uint256 amount, LibTransfer.To

mode) function wraps the amountof Ether into WETH and sends it to the

user internal/external balance:

Listing 13: TokenFacet.sol

52 function wrapEth(uint256 amount , LibTransfer.To mode) external

ë payable {

53 LibWeth.wrap(amount , mode);

54 }

Listing 14: LibWeth.sol (Lines 20,21)

19 function wrap(uint256 amount , LibTransfer.To mode) internal {

20 deposit(amount);

21 LibTransfer.sendToken(IERC20(WETH), amount , msg.sender , mode);

22 }

As the msg.value is never compared to the amount parameter, if the msg.

value sent by the user was higher than the amount the difference would

be taken by the contract and any other user would be able to steal it.

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Proof of Concept:

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

It is recommended to add a require statement that checks that msg.value

is equal to the amount parameter set in the wrapEth() call.

Remediation Plan:

SOLVED: The Beanstalk team corrected the issue. Ether refunds were added

instead of a require check. If there is leftover Ether in the contract,

then it will be refunded.

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.8 (HAL-08) MULTIPLE OVERFLOWS IN
MARKETPLACEFACET - LOW

Description:

In the MarketplaceFacet there are multiple overflows that can cause some

inconsistencies.

One of them is located in the _createPodListing() function:

Listing 15: Listing.sol (Line 60)

50 function _createPodListing(

51 uint256 index ,

52 uint256 start ,

53 uint256 amount ,

54 uint24 pricePerPod ,

55 uint256 maxHarvestableIndex ,

56 LibTransfer.To mode

57) internal {

58 uint256 plotSize = s.a[msg.sender]. field.plots[index];

59 require(

60 plotSize >= (start + amount) && amount > 0,

61 "Marketplace: Invalid Plot/Amount."

62);

63 require(

64 0 < pricePerPod ,

65 "Marketplace: Pod price must be greater than 0."

66);

67 require(

68 s.f.harvestable <= maxHarvestableIndex ,

69 "Marketplace: Expired."

70);

71

72 if (s.podListings[index] != bytes32 (0)) _cancelPodListing(

ë index);

73

74 s.podListings[index] = hashListing(

75 start ,

76 amount ,

77 pricePerPod ,

78 maxHarvestableIndex ,

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

79 mode

80);

81

82 emit PodListingCreated(

83 msg.sender ,

84 index ,

85 start ,

86 amount ,

87 pricePerPod ,

88 maxHarvestableIndex ,

89 mode

90);

91 }

The require(plotSize >= (start + amount)&& amount > 0, "Marketplace:

Invalid Plot/Amount."); overflow allows users to create PodListings

of very high amounts, although this can not be exploited since when

removing the Plots from the seller through the removePlot() function

SafeMath is used and the transaction reverts:

Listing 16: PodTransfer.sol (Line 82)

72 function removePlot(

73 address account ,

74 uint256 id ,

75 uint256 start ,

76 uint256 end

77) internal {

78 uint256 amount = s.a[account]. field.plots[id];

79 if (start == 0) delete s.a[account]. field.plots[id];

80 else s.a[account]. field.plots[id] = start;

81 if (end != amount)

82 s.a[account]. field.plots[id.add(end)] = amount.sub(end);

83 }

40

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

On the other hand, a similar issue occurs in the roundAmount() function:

Listing 17: Listing.sol (Line 169)

162 // If remainder left (always <1 pod) that would otherwise be

ë unpurchaseable

163 // due to rounding from calculating amount , give it to last buyer

164 function roundAmount(PodListing calldata l, uint256 amount)

165 private

166 pure

167 returns (uint256)

168 {

169 if ((l.amount - amount) < (1000000 / l.pricePerPod)) amount =

ë l.amount;

170 return amount;

171 }

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

It is recommended to make use of the SafeMath library in the functions

described above.

Remediation Plan:

SOLVED: The Beanstalk team corrected the issue. All the overflows were

addressed.

41

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.9 (HAL-09)
FERTILIZERPREMINT.BUYANDMINT
FUNCTION COULD BE SANDWICHED -
INFORMATIONAL

Description:

In the FertilizerPreMint, the function buy() is used to swap Ether into

USDC through the UniswapV3 router:

Listing 18: FertilizerPreMint.sol (Line 104)

94 function buy(uint256 minAmountOut) private returns (uint256

ë amountOut) {

95 IWETH(WETH).deposit{value: msg.value }();

96 ISwapRouter.ExactInputSingleParams memory params =

97 ISwapRouter.ExactInputSingleParams ({

98 tokenIn: WETH ,

99 tokenOut: USDC ,

100 fee: POOL_FEE ,

101 recipient: CUSTODIAN ,

102 deadline: block.timestamp ,

103 amountIn: msg.value ,

104 amountOutMinimum: minAmountOut ,

105 sqrtPriceLimitX96: 0

106 });

107 amountOut = ISwapRouter(SWAP_ROUTER).exactInputSingle(params);

108 }

The amountOutMinimum is set with a user controlled parameter minAmountOut

. If the Ether sent through msg.value is higher than the minAmountOut in

USDC the transaction may get sandwiched causing the user to swap Ether

for USDC at a higher cost, receiving less USDC for the same amount of

Ether.

The issue was flagged as informational, as there is a function in the

FertilizerPreMint contract that allows to get the exact amount of USDC

for a given amount of Ether after swap. We assume that this function is

42

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

used in the backend mitigating the issue. Only users interacting with

the smart contract directly may have the problem described.

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to inform the users, specially whales, that they should

try to avoid interacting with the smart contract directly for this and

that if they do, inform them on how they should determine the minAmountOut

preventing them from getting sandwiched.

Remediation Plan:

SOLVED: The Beanstalk team documented their code mentioning that any

slippage should be properly accounted by the users:

Listing 19: FertilizerPreMint.sol (Line 49)

49 // Note: Slippage should be properly be accounted for in

50 // minBuyAmount when calling the buyAndMint function directly.

51 function buyAndMint(uint256 minBuyAmount) external payable

ë nonReentrant {

52 uint256 amount = buy(minBuyAmount);

53 require(IUSDC.balanceOf(CUSTODIAN) <= MAX_RAISE , "Fertilizer:

ë Not enough remaining");

54 __mint(amount);

55 }

43

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.10 (HAL-10) POD PRICE IS LIMITED
TO 16.7 BEANS - INFORMATIONAL

Description:

In the MarketplaceFacet, the functions createPodListing() and

createPodOrder() make use of an uint24 to hold the pricePerPod parameter.

As the maximum value that an uint24 can hold is 16_777215 the users will

not be able to set a price higher than that for a Pod.

Listing 20: MarketplaceFacet.sol (Line 26)

22 function createPodListing(

23 uint256 index ,

24 uint256 start ,

25 uint256 amount ,

26 uint24 pricePerPod ,

27 uint256 maxHarvestableIndex ,

28 LibTransfer.To mode

29) external payable {

30 _createPodListing(

31 index ,

32 start ,

33 amount ,

34 pricePerPod ,

35 maxHarvestableIndex ,

36 mode

37);

38 }

Listing 21: MarketplaceFacet.sol (Line 73)

71 function createPodOrder(

72 uint256 beanAmount ,

73 uint24 pricePerPod ,

74 uint256 maxPlaceInLine ,

75 LibTransfer.From mode

76) external payable returns (bytes32 id) {

77 beanAmount = LibTransfer.receiveToken(C.bean(), beanAmount ,

ë msg.sender , mode);

44

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

78 return _createPodOrder(beanAmount , pricePerPod , maxPlaceInLine

ë);

79 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to consider using an uint64 instead to allow users to

set higher prices for the Pods.

Remediation Plan:

SOLVED: The Beanstalk team documented their code mentioning that the

highest price to list a Pod for is 16_777215 Beans:

Listing 22: MarketplaceFacet.sol (Line 22)

22 // Note: pricePerPod is bounded by 16 _777_215 Beans.

23 function createPodListing(

24 uint256 index ,

25 uint256 start ,

26 uint256 amount ,

27 uint24 pricePerPod ,

28 uint256 maxHarvestableIndex ,

29 LibTransfer.To mode

30) external payable {

31 _createPodListing(

32 index ,

33 start ,

34 amount ,

35 pricePerPod ,

36 maxHarvestableIndex ,

37 mode

38);

39 }

45

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 23: MarketplaceFacet.sol (Line 72)

72 // Note: pricePerPod is bounded by 16 _777_215 Beans.

73 function createPodOrder(

74 uint256 beanAmount ,

75 uint24 pricePerPod ,

76 uint256 maxPlaceInLine ,

77 LibTransfer.From mode

78) external payable returns (bytes32 id) {

79 beanAmount = LibTransfer.receiveToken(C.bean(), beanAmount ,

ë msg.sender , mode);

80 return _createPodOrder(beanAmount , pricePerPod , maxPlaceInLine

ë);

81 }

46

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.11 (HAL-11) FARMFACET: USE OF
DELEGATECALL IN A FOR LOOP -
INFORMATIONAL

Description:

The FarmFacet allows performing multiple delegatecalls inside a for loop:

Listing 24: FarmFacet.sol (Lines 23,37,43)

23 function _farm(bytes calldata data) private {

24 LibDiamond.DiamondStorage storage ds;

25 bytes32 position = LibDiamond.DIAMOND_STORAGE_POSITION;

26 assembly {

27 ds.slot := position

28 }

29 bytes4 functionSelector;

30 assembly {

31 functionSelector := calldataload(data.offset)

32 }

33 address facet = ds

34 .selectorToFacetAndPosition[functionSelector]

35 .facetAddress;

36 require(facet != address (0), "Diamond: Function does not exist

ë ");

37 (bool success ,) = address(facet).delegatecall(data);

38 require(success , "FarmFacet: Function call failed!");

39 }

40

41 function farm(bytes [] calldata data) external payable {

42 for (uint256 i = 0; i < data.length; i++) {

43 _farm(data[i]);

44 }

45 if (msg.value > 0 && address(this).balance > 0) {

46 (bool success ,) = msg.sender.call{value: address(this).

ë balance }(

47 new bytes (0)

48);

49 require(success , "Farm: Eth transfer Failed.");

50 }

51 }

47

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

In this situation, msg.sender and msg.value would be persisted across

the different iterations/delegatecalls in the loop. For example, a user

could submit 1 Ether as msg.value to the farm(bytes[] calldata data) call

and in the data array add 3 different calls that each of those made use

of that Ether. If the Diamond contract had some Ether, user would be

paying just that Ether and the 2 remaining Ether would be taken from the

smart contract balance.

Currently, there is no exploitation path for this issue, as the contracts

should never be holding any Ether. Also, the remaining Ether in the

contract is sent back to msg.sender after the _farm() calls.

For this reason, we have set this risk as informational.

References:

Multi Delegatecall: Solidity 0.8

samczsun’s blog post

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to make sure that the overall logic and future upgrades

of the contracts are compatible with this functionality, so no bugs are

introduced in the code.

Remediation Plan:

SOLVED/ACKNOWLEDGED: The Beanstalk team is aware of the issue and will

take this into account in future upgrades.

48

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://youtu.be/NkTWU6tc9WU?t=361
https://samczsun.com/two-rights-might-make-a-wrong/

3.12 (HAL-12) CRITICAL DEPENDENCY
ON CURVE METAPOOL FACTORIES -
INFORMATIONAL

Description:

In the CurveFacet there are multiple functions that make use of the

approveToken() function, for example:

Listing 25: CurveFacet.sol (Line 45)

29 function exchange(

30 address pool ,

31 address fromToken ,

32 address toToken ,

33 uint256 amountIn ,

34 uint256 minAmountOut ,

35 bool stable ,

36 LibTransfer.From fromMode ,

37 LibTransfer.To toMode

38) external payable nonReentrant {

39 (int128 i, int128 j) = getIandJ(fromToken , toToken , pool ,

ë stable);

40 amountIn = IERC20(fromToken).receiveToken(

41 amountIn ,

42 msg.sender ,

43 fromMode

44);

45 IERC20(fromToken).approveToken(pool , amountIn);

46

47 if (toMode == LibTransfer.To.EXTERNAL) {

48 ICurvePoolR(pool).exchange(

49 i,

50 j,

51 amountIn ,

52 minAmountOut ,

53 msg.sender

54);

55 } else {

56 uint256 amountOut = ICurvePool(pool).exchange(

57 i,

49

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

58 j,

59 amountIn ,

60 minAmountOut

61);

62 msg.sender.increaseInternalBalance(IERC20(toToken),

ë amountOut);

63 }

64 }

pool and fromToken are user controlled parameters. On the other hand, the

LibTransfer.From fromMode set to INTERNAL_TOLERANT would allow anyone to

bypass this receiveToken() call.

The only blocker to avoid an attacker of approving his own address and

extract all the tokens of the contract is the following require statement:

Listing 26: CurveFacet.sol (Line 301)

286 function getIandJ(

287 address from ,

288 address to ,

289 address pool ,

290 bool stable

291) private view returns (int128 i, int128 j) {

292 address factory = stable ? STABLE_FACTORY : CRYPTO_FACTORY;

293 address [4] memory coins = ICurveFactory(factory).get_coins(

ë pool);

294 i = 4;

295 j = 4;

296 for (uint256 _i = 0; _i < 4; ++_i) {

297 if (coins[_i] == from) i = int128(_i);

298 else if (coins[_i] == to) j = int128(_i);

299 else if (coins[_i] == address (0)) break;

300 }

301 require(i < 4 && j < 4, "Curve: Tokens not in pool");

302 }

In case of a malicious Curve Metapool Factory (0xB9fC157394Af804a3578134A6585C0dc9cc990d4

or 0x0959158b6040D32d04c301A72CBFD6b39E21c9AE), all the tokens in the

contracts could be drained.

50

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

No recommendation against this issue. The issue described likelihood is

minimum but something to be aware of.

Remediation Plan:

ACKNOWLEDGED: The Beanstalk team acknowledges this.

51

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.13 (HAL-13) SAFETRANSFER IS NOT
USED FOR ALL THE TOKEN TRANSFERS -
INFORMATIONAL

Description:

SafeERC20.safeTransferFrom() is used in all the code base. Although in the

LibTransfer.transferToken() function, the standard ERC20.transferFrom()

is still used.

Code Location:

Listing 27: LibTransfer.sol (Line 37)

29 function transferToken(

30 IERC20 token ,

31 address recipient ,

32 uint256 amount ,

33 From fromMode ,

34 To toMode

35) internal returns (uint256 transferredAmount) {

36 if (fromMode == From.EXTERNAL && toMode == To.EXTERNAL) {

37 token.transferFrom(msg.sender , recipient , amount);

38 return amount;

39 }

40 amount = receiveToken(token , amount , msg.sender , fromMode);

41 sendToken(token , amount , recipient , toMode);

42 return amount;

43 }

Risk Level:

Likelihood - 1

Impact - 1

52

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol

Recommendation:

It is recommended to use SafeERC20.safeTransferFrom() also in the

LibTransfer.transferToken() function.

Remediation Plan:

SOLVED: Beanstalk team uses now SafeERC20 in all the token transfers.

53

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.14 (HAL-14) REQUIRE STATEMENT
TYPOS - INFORMATIONAL

Description:

In the following require statements some typos were detected:

LibBalance.sol

- Line 73:

require(allowPartial || (currentBalance >= amount), "Balance:

Insufficnent internal balance");

TokenSilo.sol

- Line 285:

require(season <= s.season.current, "Claim: Withdrawal not recievable

.");

LibFertilizer.sol

- Line 153:

require(s.activeFertilizer == 0, "Still active fertliizer");

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to correct the require statement messages highlighted.

Remediation Plan:

SOLVED: Beanstalk team corrected the typos suggested.

54

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.15 (HAL-15) INITIALIZE FUNCTION
IN FERTILIZER CONTRACT CAN BE
REMOVED - INFORMATIONAL

Description:

Currently, the FertilizerPreMint contract is deployed behind a

TransparentUpgradeableProxy.

After the replanting, when Beanstalk is unpaused, the BCM will call the

function addFertilizerOwner() which will handle the process of adding

BEAN:3CRV liquidity and minting new Deposited Beans for all the Fertilizer

minted prior to unpause.

At the same time, the TransparentUpgradeableProxy contract will be

upgraded to a new Fertilizer contract, instead of the FertilizerPreMint

implementation used before. This will move the mintFertilizer()

functionality to Beanstalk itself, instead of happening in the

FertilizerPreMint contract.

At this point, Beanstalk will automatically add new liquidity for Unripe

LP holders and new Beans in the same transaction as when Fertilizer is

minted.

The new Fertilizer contract that will be used contains an initialize()

function:

Listing 28: Fertilizer.sol

28 function decreaseInternalBalance(

29 function initialize () public initializer { // @audit can be removed

30 __Internallize_init("");

31 }

As the TransparentUpgradeableProxy holds all the storage variables and

will be already initialized in the FertilizerPreMint implementation,

any call to this function will revert as the contract will be already

55

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://etherscan.io/address/0xb151ea73053386b8d0367c401ee58a06e07ea680#code
https://etherscan.io/address/0x402c84De2Ce49aF88f5e2eF3710ff89bFED36cB6
https://etherscan.io/address/0x402c84De2Ce49aF88f5e2eF3710ff89bFED36cB6
https://etherscan.io/address/0xb151ea73053386b8d0367c401ee58a06e07ea680#code

initialized, hence this initialize() function can be removed from the

Fertilizer contract.

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to consider removing the initialize() function from the

Fertilizer contract in order to reduce the deployment gas costs.

Remediation Plan:

SOLVED: Beanstalk team removed the initialize() function from the

Fertilizer contract.

56

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.16 (HAL-16) UNNEEDED
INITIALIZATION OF UINT256 VARIABLES
TO 0 - INFORMATIONAL

Description:

As i is an uint256, it is already initialized to 0. uint256 i = 0

reassigns the 0 to i which wastes gas.

Code Location:

Internalizer.sol

- Line 62:

for (uint256 i = 0; i < accounts.length; i++){

Fertilizer.sol

- Line 77:

for (uint256 i = 0; i < ids.length; i++){

- Line 90:

for (uint256 i = 0; i < ids.length; i++){

- Line 99:

for (uint256 i = 0; i < ids.length; i++){

Fertilizer1155.sol

- Line 67:

for (uint256 i = 0; i < ids.length; ++i){

TokenSilo.sol

- Line 210:

for (uint256 i = 0; i < seasons.length; i++){

- Line 268:

for (uint256 i = 0; i < seasons.length; i++){

- Line 325:

for (uint256 i = 0; i < seasons.length; i++){

57

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

SiloFacet.sol

- Line 140:

for (uint256 i = 0; i < seasons.length; ++i){

TokenFacet.sol

- Line 82:

for (uint256 i = 0; i < tokens.length; i++){

- Line 103:

for (uint256 i = 0; i < tokens.length; i++){

- Line 124:

for (uint256 i = 0; i < tokens.length; i++){

- Line 147:

for (uint256 i = 0; i < tokens.length; i++){

FieldFacet.sol

- Line 84:

for (uint256 i = 0; i < plots.length; i++){

FarmFacet.sol

- Line 44:

for (uint256 i = 0; i < data.length; i++){

CurveFacet.sol

- Line 109:

for (uint256 i = 0; i < nCoins; ++i){

- Line 167:

for (uint256 i = 0; i < nCoins; i++)

- Line 174:

for (uint256 i = 0; i < nCoins; i++)

- Line 186:

for (uint256 i = 0; i < nCoins; i++)

- Line 191:

for (uint256 i = 0; i < nCoins; ++i){

- Line 246:

for (uint256 i = 0; i < nCoins; ++i){

- Line 296:

for (uint256 _i = 0; _i < 4; ++_i){

- Line 313:

58

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

for (uint256 _i = 0; _i < 8; ++_i){

- Line 329:

for (uint256 _i = 0; _i < 4; ++_i){

LibPlainCurveConvert.sol

- Line 79:

for (uint256 k = 0; k < 256; k++){

LibCurve.sol

- Line 56:

for (uint256 _i = 0; _i < N_COINS; _i++){

- Line 68:

for (uint256 _i = 0; _i < 255; _i++){

- Line 85:

for (uint256 _i = 0; _i < xp.length; _i++){

- Line 92:

for (uint256 _i = 0; _i < 256; _i++){

- Line 94:

for (uint256 _j = 0; _j < xp.length; _j++){

LibIncentive.sol

- Line 34:

for (uint256 i = 0; i < p; ++i){

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to not initialize uint variables to 0 to save some gas.

For example, use instead:

for (uint256 i; i < accounts.length; ++i){

59

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

SOLVED: Beanstalk team followed Halborn’s suggestion reducing the gas

costs.

60

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.17 (HAL-17) USING POSTFIX
OPERATORS IN LOOPS - INFORMATIONAL

Description:

In the loops below, postfix (e.g. i++) operators were used to increment

or decrement variable values. In loops, using prefix operators (e.g. ++i)

costs less gas per iteration than using postfix operators.

Code Location:

Internalizer.sol

- Line 62:

for (uint256 i = 0; i < accounts.length; i++){

Fertilizer.sol

- Line 77:

for (uint256 i = 0; i < ids.length; i++){

- Line 90:

for (uint256 i = 0; i < ids.length; i++){

- Line 99:

for (uint256 i = 0; i < ids.length; i++){

TokenSilo.sol

- Line 210:

for (uint256 i = 0; i < seasons.length; i++){

- Line 268:

for (uint256 i = 0; i < seasons.length; i++){

- Line 325:

for (uint256 i = 0; i < seasons.length; i++){

TokenFacet.sol

- Line 82:

for (uint256 i = 0; i < tokens.length; i++){

- Line 103:

for (uint256 i = 0; i < tokens.length; i++){

61

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

- Line 124:

for (uint256 i = 0; i < tokens.length; i++){

- Line 147:

for (uint256 i = 0; i < tokens.length; i++){

FieldFacet.sol

- Line 84:

for (uint256 i = 0; i < plots.length; i++){

DiamondLoupeFacet.sol

- Line 32:

for (uint256 i; i < numFacets; i++){

FarmFacet.sol

- Line 44:

for (uint256 i = 0; i < data.length; i++){

CurveFacet.sol

- Line 167:

for (uint256 i = 0; i < nCoins; i++)

- Line 174:

for (uint256 i = 0; i < nCoins; i++)

- Line 186:

for (uint256 i = 0; i < nCoins; i++)

LibPlainCurveConvert.sol

- Line 79:

for (uint256 k = 0; k < 256; k++){

LibDiamond.sol

- Line 110:

for (uint256 facetIndex; facetIndex < _diamondCut.length; facetIndex++)

{

- Line 135:

for (uint256 selectorIndex; selectorIndex < _functionSelectors.length;

selectorIndex++){

- Line 153:

for (uint256 selectorIndex; selectorIndex < _functionSelectors.length;

62

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

selectorIndex++){

- Line 168:

for (uint256 selectorIndex; selectorIndex < _functionSelectors.length;

selectorIndex++){

LibCurve.sol

- Line 56:

for (uint256 _i = 0; _i < N_COINS; _i++){

- Line 68:

for (uint256 _i = 0; _i < 255; _i++){

- Line 85:

for (uint256 _i = 0; _i < xp.length; _i++){

- Line 92:

for (uint256 _i = 0; _i < 256; _i++){

- Line 94:

for (uint256 _j = 0; _j < xp.length; _j++){

Decimal.sol

- Line 140:

for (uint256 i = 1; i < b; i++){

Proof of Concept:

For example, based in the following test contract:

Listing 29: Test.sol

1 //SPDX -License -Identifier: MIT

2 pragma solidity 0.8.9;

3

4 contract test {

5 function postiincrement(uint256 iterations) public {

6 for (uint256 i = 0; i < iterations; i++) {

7 }

8 }

9 function preiincrement(uint256 iterations) public {

10 for (uint256 i = 0; i < iterations; ++i) {

11 }

12 }

13 }

63

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

We can see the difference in the gas costs:

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to use ++i instead of i++ to increment the value of an

uint variable inside a loop. This does not only apply to the iterator

variable. It also applies to increment/decrement done inside the loop

code block.

Remediation Plan:

SOLVED: Beanstalk team followed Halborn’s suggestion and now uses prefix

operators to increment the value of an uint variable inside loops reducing

the gas costs.

64

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	References
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

